

WebSphere Application Server V5

Understanding the
WebSphere Application Server

Web server plug-in

Sharad Cocasse
Makarand Kulkarni

IBM WebSphere Execution Team
October 2003

 2

About the authors

Sharad Cocasse is a Staff Software Engineer on the WebSphere Execution
Team. His experience includes several years of writing object-oriented
applications and developing/delivering WebSphere education to Customers and
IBM field technical personnel. Most recently, he has been directly helping
customers succeed with their use of the WebSphere Application Server. Sharad
holds a Masters Degree in Electrical Engineering from the University of Alabama
and lives and works in Rochester, Minnesota. Sharad can be reached at
SharadCocasse@us.ibm.com

Makarand Kulkarni is a Staff Software Engineer on the WebSphere Execution
Team. He has more than three years experience working with WebSphere-based
solutions, and has helped many customers integrate and test WebSphere
solutions on various platforms. His areas of expertise are J2EE client/server
applications, CORBA interoperability and WebSphere work load management.
Makarand works at the IBM Pittsburgh, PA, lab and can be reached at
makarand@us.ibm.com

Acknowledgements
We would like to thank the following people for their invaluable contributions to
this paper:

• Daniel Julin, Technical Area Lead, WebSphere Support
• Jim Stetor, Manager, WebSphere Execution Team
• Arvind Srinivasan, WebSphere Application Server Development

 3

Table of Contents

Introduction ………………………………………………………………………………………

1 Understanding the Web server plug-in …………………………………………………

1.1 Plug-in basics ……………………………………………………………
1.2 Plug-in architecture ……………………………………………………………
1.3 Plug-in operation ……………………………………………………………
1.4 Operation of the HttpTransport module ………………………………

2 Plug-in configuration parameters …………………………………………………

2.1 Parameters on application server node ………………………………
2.2 Parameters on the Web server side ………………………………………

3 Problem determination ……………………………………………………………………

3.1 Logs and traces ……………………………………………………………
3.1.1 Logs and traces on the plug-in side ……………………
3.1.2 Logs and traces on the application server side ……………

 3.2 Debugging tools and techniques ………………………………………
3.2.1 Using OS command: netstat ………………………………
3.2.2 Using telnet as a debugging tool ………………………………
3.2.3 Using a Web browser to diagnose the problem ……………
3.2.4 Using Tivoli Performance Viewer ………………………………
3.2.5 Generating javacore files ………………………………………
3.2.6 Server-status utility in IBM HTTP Server ……………………

3.3 Debugging WebSphere hangs ………………………………………

4 Miscellaneous topics ……………………………………………………………………
4.1 Configuring IHS 2.0 plug-in …………………………………………………
4.2 Merging two plug-in files together ………………………………………

Conclusion ………………………………………………………………………………………

Appendix A TCP/IP backlog and application server hang conditions ……………………

Appendix B Summary of references ……………………………………………………………

4

5
5
6
8
18

20
20
25

29
29
29
35
35
39
41
42
45
46
48

52
52
52

54

55

59

 4

Introduction

What is the WebSphere Application Server Web server plug-in?

The IBM® WebSphere® Application Server Web server plug-in is the “glue”
between a Web server and WebSphere Application Server. The primary
responsibility of the plug-in is to forward HTTP requests from the Web server to
the WebSphere Application Server. The plug-in is shipped along with a
WebSphere Application Server installation CD and is comprised of a native
library. Although the plug-in code varies with the Web server type and the
operating system that it’s running on, its overall functionality remains the same.

Who should read this document?

This is a technical paper intended for audiences such as application developers,
architects, system administrators or anyone wanting to understand or debug the
plug-in. Although this paper has been written and tested for WebSphere
Application Server V5, it will be very useful for Version 4 users as well.

This paper puts special emphasis on understanding and rectifying failure
situations related to the plug-in, especially such failures which are caused due to
overloaded or hung systems.

This paper does not discuss the workings of a Web server.

 5

1 Understanding the Web server plug-in

An in-depth understanding of the plug-in will not only help you troubleshoot plug-
in-related issues more quickly, but it will also help you make better application
architecture decisions.

The WebSphere plug-in is developed using the native programming language C
which, unlike Java™, is used for developing the application server. The plug-in
code varies slightly depending on the operating system (OS) and the Web server
being used, but in spite of these slight differences, its operation is very similar on
all operating systems and Web servers.

The examples provided in this section are based on IBM HTTP Server version
1.3.26 running on Windows® 2000. The application server used is WebSphere
Application Server V5 running on the same Windows node. Although we used a
single node for our testing, all the concepts discussed in this section will apply to
multi-node scenarios as well.

1.1 Plug-in basics

WebSphere Application Server can be front-ended by a variety of supported Web
servers. These Web servers can be from different vendors running on many
different operating systems1. As seen in Figure 1, an HTTP request from a Web
browser enters the Web server and is then redirected to the application server.
This redirection is performed by the WebSphere plug-in. You can think of the
WebSphere plug-in as an “agent” redirecting HTTP requests from the Web
server to the application server using the HTTP protocol.

Figure 1. The plug-in agent

1 List of supported Web servers available at:
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Web
Server

plugin
“agent”

AppServer

WWW Internet
browsers like
IE or NS

Http
Transport

HTTP
HTTP

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

 6

This redirection is based on a set of rules dependent upon the WebSphere
Application Server configuration. The Web server gives the WebSphere plug-in
an opportunity to handle every request first, and only when WebSphere is not
configured to service that URL does the request go to the Web server for
servicing.

The plug-in code is in the form of a DLL library on Windows, an SO library on
AIX®, Solaris®, and so on. This library resides on the Web server machine and is
loaded by the Web server startup process.

The plug-in “sends” HTTP requests, and so is essentially an HTTP client. The
application server receives those requests, and is therefore an HTTP Server. The
component inside the application server which does the job of an HTTP Server is
known as the HttpTransport. The HttpTransport receives requests over a port
that’s unique to that application server (e.g. port 9081). An application server can
be configured to receive requests over multiple ports (e.g. ports 9081 and 9082),
in which case there would be two instances of the HttpTransport component in
that application server. Note that while a certain application server is using ports
9081 and 9082, no other application servers on that node can be configured to
use these same ports.

¨ Question:

 Why not send the HTTP requests from the Web server directly to HttpTransport and
thus bypass the Web server/plug-in combination?

B Answer:

 Using the plug-in has many advantages:
• The plug-in provides work load management and failover capabilities by

distributing requests evenly to multiple application servers and routing
requests away from a failed application server.

• Static content can be served by the Web server without doing a full round trip
to the application server, thus providing better performance.

• The Web server provides an additional hardware layer between the Web
browser and the application server, thus strengthening the application
server’s security.

1.2 Plug-in architecture

Now, let’s look at the details. To understand the plug-in’s operation, let’s start by
looking at the figure below:

 7

Figure 2. Detailed view of the plug-in operation

1. Web Server Process – native code: This is where the request first
comes in. The default port through which it comes in is port 80.

2. httpd.conf: The default configuration file of the IBM HTTP Server (HIS)
Web server. It contains the location of the plug-in DLL and plugin-
cfg.xml. The plug-in DLL and plugin-cfg.xml are loaded during the
startup of the Web server.

3. Plug-in: DLL residing on the same system as the Web server. This DLL is
shipped along with WebSphere Application Server (if WebSphere is on a
different machine than IHS, this file has to be copied over to the IHS node).
It is loaded into memory by the Web server during startup and runs inside
the same process as the Web server.

¨ Tip:

 Web servers can be multi-process/single-threaded or single-process/multi-threaded.
For multi-process Web servers, each HTTP request is associated with a separate PID
on the Web server machine, and a separate copy of the plug-in is loaded in each Web
server process. An example of a multi-process Web server is IHS 1.3.x on AIX. A
single process Web server is one in which each HTTP request is associated with a
separate thread in the same PID, and therefore only a single copy of the plug-in is
loaded. Examples of single-process Web servers are IHS 2.0 on AIX, and IHS 1.3.x
on Windows and iPlanet®.

4. plugin-cfg.xml: This is WebSphere’s plug-in configuration file and

contains information about which URLs should be serviced by WebSphere.

Web server
APIs

HTTP
Transport

Web server Process – native code AppServer process – Java code

DoGet()

DoPost ()

Web
Container Plugin-cfg.xml

Parse request

Plug-in

TCP/IP port number
arbitrarily assigned

Configurable TCP/IP port number
Example: 9080

httpd.conf

Web server
Port
Example: 80

Request from
browser

Send request

Recv response

TCP/IP
backlog

TCP/IP
backlog

 8

This configuration file is generated by WebSphere at a cell level based on
all the Web modules installed in that cell. If WebSphere is on a different
machine than IHS, this file has to be copied over to the IHS node. A single
Web server/plug-in can service multiple cells. To do that, the plugin-
cfg.xml file from all the cells have to be manually merged into one;
details in Section 4.

5. HttpTransport: This component is an HTTP Server implemented in Java.
Its job is to accept the HTTP request from the plug-in, and then forward it
to the Web container. This is a part of the product code that runs inside
WebSphere Application Server.

6. Web container: Implements the J2EE servlet specification. It is
responsible for processing data inside the request and giving the response
data back to the plug-in-in.

¨ Question:

 Can we mix operating systems? For instance, can we architect a solution with a Web
server and plug-in on Linux and the application server on AIX?

B Answer:

 Yes. Make sure you have the Linux version of the plug-in, not the AIX version.

¨ Question:

 Can we mix WebSphere Application Server versions?

B Answer:

Yes. A V3.5.x Open Servlet Engine (OSE) plug-in and the V5 HTTP plug-in can be run in
the same Web server installation. The V5 plug-in can spray requests to a V4 Application
Server as well. See: http://www.redbooks.ibm.com/redbooks/pdfs/sg246910.pdf or
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/a
es/ae/tins_websmig2.html.

1.3 Plug-in operation

Essentially, there are four functions of the plug-in:

a. Initialization
b. URL matching and clone determination
c. Sending requests to the application server
d. Receiving responses from the application server

Let’s discuss each of these steps in detail.

a. Initialization

When IHS is started (using the command <IHS_HOME>\apache –k start),
the IHS configuration file <IHS_HOME>\conf\httpd.conf is read during the

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/ae/tins_websmig2.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg246910.pdf

 9

initialization. If WebSphere is configured to use that instance of IHS, the
httpd.conf file contains the following two directives:

LoadModule ibm_app_server_http_module <WASDIR>/bin/mod_ibm_app_server_http.dll

WebSpherePluginConfig <WAS5_HOME>\config\cells\plugin-cfg.xml

LoadModule points to the plug-in DLL, and WebSpherePluginConfig points
to the plugin-cfg.xml file, which lists all the URLs that are to be serviced by
the WebSphere cell.

¨ Question:

 Can two or more WebSphere cells be sprayed by a single plug-in?

B Answer:

 Yes. You have to merge the two plug-in files (generated by the two cells) into one
single file. Details in Section 4.

When the Web server is starting, it loads the plug-in DLL, and then:

1. loads the plugin-cfg.xml into the plug-in process
2. parses and validates the plug-in configuration file.

Once the DLL has been found and loaded, and the configuration file has been
found, loaded and successfully parsed, then initialization is complete and the
plug-in is ready to receive HTTP requests.

¨ Debug tip:

 The plug-in will not load successfully if:
- The plug-in DLL and/or plugin-cfg.xml are not in the location specified.
- The version of the DLL is incorrect. (e.g. using WebSphere Application Server

V4’s DLL with V5.
- The XML file has a format error or content error detected during parsing.

The reason for failure can be found in:

- The command prompt from where the Web server Start command has been
initiated, and

- In the plug-in log file <WAS_HOME>\logs\http_plugin.log.

See Section 3 for detailed information about debugging plug-in initialization failures.

-
Modifying and reloading the plug-in file

When new applications are installed in WebSphere Application Server, or when
existing ones are modified, it may be necessary to update plugin-cfg.xml.
The plug-in configuration file can be modified in the following ways:

 10

- Use the Web-based administration user interface (webui).
- Run the command line utility GenPluginCfg.bat2.
- Manually edit plugin-cfg.xml in a text editor3.

If the Web server resides on a machine other than the application server
machine, the plug-in file needs to be copied or FTP’d from the application server
machine to the Web server machine.

If plugin-cfg.xml is updated, it can automatically be reloaded by the plug-in
without requiring a restart of the Web server. By default, the plug-in attempts to
reload the plug-in configuration file every 60 seconds. The plug-in does this by
checking the timestamp of plugin-cfg.xml, and if the timestamp has changed
since the previous check, it reloads it.

The default poll rate is 60 seconds and should be sufficient for most applications.
However, if you need to change it, insert the RefreshInterval attribute into the
Config tag of plugin-cfg.xml. Please note that this integer represents
seconds, so in this example, we are reloading the plug-in file every 5 minutes:

<?xml version="1.0"?>
<Config RefreshInterval=”300”>

<Log LogLevel="Warn" Name=
"D:\WebSphere\AppServer/logs/http_plugin.log"/>

<Property Name="ESIEnable" Value="false"/>
<Property Name="ESIMaxCacheSize" Value="1024"/>

The plug-in polls the timestamp on plugin-cfg.xml only when a new request
comes in. Therefore, the updated plug-in is not loaded into the process memory
until a new request is received, after the RefreshInterval period has elapsed.

A lower value for RefreshInterval may be needed in some test/development
environments where applications are continually being updated. A higher value
may be needed in stable production environments where the applications don’t
change very frequently. This is a fairly low intensity function and not likely to
provide a big performance boost for most environments.

b. URL matching and Clone determination

Whenever the Web server receives a new HTTP request, it first passes that
request to the plug-in. If the plug-in is not configured to service that URI, then,
and only then, does the Web server handle the request. The plug-in determines
whether this request should be handled by WebSphere by matching the URL
requested to all the URLs defined in plugin-cfg.xml. Before looking at the

2 http://publib7b.boulder.ibm.com/wasinfo1/en/info/aes/ae/trun_app_regen.html
3 http://publib7b.boulder.ibm.com/wasinfo1/en/info/aes/ae/trun_plugin_edit.html

http://publib7b.boulder.ibm.com/wasinfo1/en/info/aes/ae/trun_app_regen.html
http://publib7b.boulder.ibm.com/wasinfo1/en/info/aes/ae/trun_plugin_edit.html

 11

flowchart in Figure 3, let’s understand the structure of a bare-bones plug-in
configuration file, with many of the attributes stripped off for the sake of simplicity.

<Config>
<Log LogLevel="Error" Name="<WAS_HOME>\logs\http_plugin.log"/>

<VirtualHostGroup Name="default_host">
<VirtualHost Name="*:80"/>

</VirtualHostGroup>
<ServerCluster Name="MyCluster">

<Server Name="CL1">
<Transport Hostname="SHARAD" Port="9080" Protocol="http"/>

</Server>
</ServerCluster>

<UriGroup Name="MyURIs">
<Uri Name="/MyPath/*"/>

</UriGroup>
<Route ServerCluster="MyCluster"

UriGroup="MyURIs" VirtualHostGroup="default_host"/>
</Config>

The purpose of a plug-in configuration file is to take a request and associate it
with a server (clone) in a ServerCluster. The basic algorithm is very simple:

• The plug-in compares the request to each route.
• If a match for URIGroup and VirtualHostGroup is found, the plug-in sends

the request to the associated ServerCluster
• If there are multiple servers in the server cluster, the request is sent to one

of them depending upon various factors such as WLM policy, session
information, etc.

If you are interested in learning more about the terminology used in the flowchart,
refer to the following WebSphere Application Server InfoCenter URL:
http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websp
here.nd.doc/info/ae/ae/rrun_plugin.html

http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rrun_plugin.html

 12

Figure 3. Flowchart describing the selection of the clone that will handle an HTTP request

Step 1: HTTP request enters the plug-in, http://www.xyz.com/MyPath/MyPage.

Step 2: Plug-in breaks down the URL into 2 parts:
1st, www.xyz.com:80 is the hostname or the Virtual Host, and
2nd, /MyPath/MyPage is the URI.

Step 4: Compare the Virtual Host of the request with all Virtual Hosts defined in the
VirtualHostGroup of the Route.

Step 7: Compare the URI of request with all the URIs defined in the UriGroup of the
Route. (start with 1st URI)

Yes

Step 11: ServerCluster in the selected Route to handle the request.
Next step is to determine which Clone will handle the request.

Step 8: Find
URI match?

Step 13: Same Clone to
handle request. Prepare
and send request to
Clone. Yes

Step 12: Find existing
CloneID in request?

No

Step 14: Determine Clone based on LoadBalanceWeight, ClusterAddress and the
Random/RoundRobin algorithm.

Step 15: Prepare and send request to the selected Clone.

Step 9: More
routes?

Step 10b: WebSphere not to handle request.
Return control to Web server. END.

Step 5: Find
Route match?

Step 6: More
Routes?

Yes.
Next Route

Step 3: Find a Route in plugin-cfg.xml that will service this Virtual Host and URI. Start with
the last Route listed in plugin-cfg.xml and then work upwards.

No

No

Yes, get
Next route

Yes No

No

Step 10a: Route selected. WebSphere
will handle the request.

Yes

No Step 8a:
More
URIs?

http://www.xyz.com/MyPath/MyPage

 13

Step1: When the Web server receives a request, it is immediately passed to the
plug-in (assuming no other plug-ins have been configured to take the request
before the WebSphere Application Server plug-in).

Step 2: The plug-in takes the request and splits it into two parts, the VirtualHost
and the URI.

Steps 3, 4, 5 and 6: The plug-in looks at each Route defined in the plugin-
cfg.xml file, one at a time, from the bottom up. It compares the VirtualHost of
the request with those defined in each Route. If a VirtualHostGroup is not defined
for a route, the plug-in assumes the Route will match any hostname and port and
moves on to Step 7. Note that if a request matches multiple Route tags, the
Route nearest the end of the file will always match first. If there is no Route that
matches the VirtualHost, the request is passed back to the Web server (Step
10b).

Steps 7, 8, 8a and 9: Plug-in matches the URI of the request with those defined
in the URIGroup in that Route. If a URIGroup is not present, then every request
will match during the URI match portion of Route determination. Once the
VirtualHost and URI have been matched to a Route, the plug-in knows that the
request is intended for WebSphere.

Steps 10a and 10b: If the VirtualHostGroup and URI match fail, the request is
returned back to the Web server. Otherwise, it is sent to the ServerCluster that
has been identified to handle the request.

Steps 11, 12 and 13: The plug-in then checks the request's cookie or URL for
the jsessionid parameter. If a jsessionid is found, the plug-in parses it, and
removes the CloneID from the end. If the ServerCluster contains a Server
identified by this CloneID, the request gets sent to the specified Server. If there is
no jsessionid, or the ID does not correspond to a running Server, the request
goes to step 14.

Step 14: If there is no jsessionid, the plug-in uses LoadBalanceWeight,
ClusterAddress and the Random/RoundRobin algorithm to determine the target
Server. All these settings can be specified by the user.

Step 15: HTTP request sent to the target Server. If the Server does not respond
it is marked as "down", and the request is sent to another Server according to the
selection policy. The plug-in will test the downed Server according to the
RetryInterval value specified for the ServerCluster to see if it has come back up.
The default RetryInterval value is 60 seconds.

c. Sending the request to the application server

This is a two step process:

 14

1. Populate the HTTP client object: The plug-in does more than simply
“forward” the browser’s request to the application server. Once the clone
determination has been made, the plug-in actually breaks down the
original HTTP request into its various components such as HTTP header,
GET/POST data, etc. A new data packet is created by populating an
empty HTTP client object with data from the user request. Once this new
HTTP client object has been populated, it is ready to be sent. If the plug-in
is configured to communicate with the HttpTransport over SSL, it is
required to perform security functions as well.

2. The request is sent over the wire by flushing out the client object stream to
the network using TCP/IP.

The plug-in knows that the request has been successfully sent to the application
server if it receives a successful TCP/IP acknowledgement back from the
application server’s TCP/IP layer. If the TCP/IP response does not come back
within the timeout period, an HTTP error 500 is returned to the Web browser.
This timeout is either the OS level TCP/IP timeout or the ConnectTimeout
parameter in plugin-cfg.xml, whichever is lower. These timeouts are
discussed in detail later in this section.

Marking the server down

If the plug-in is unable to send a request to a particular application server, it will
mark that application server as being unreachable and will redirect that request
(and all future requests) to the next clone in that ServerCluster. This
failure/redirection step will cause a delayed response to the first request which
detects the failed application server. If session sharing is enabled (using either
persistence or in-memory session replication), the new clone will pick up the
session information, and there will be no loss of session. But if the session is not
being shared, it will cause the session information to be lost, and the user will
have to create a new session. The browser gets an HTTP error 500 if every
clone in the ServerCluster is down.

The plug-in will not send future requests to the failed application server for a
period specified by the RetryInterval attribute on the ServerCluster tag in
plugin-cfg.xml. The unit of the RetryInterval is in seconds. It is modified as
shown below:

<ServerCluster Name="server1_Cluster" RetryInterval=”10”>

<Server Name="server1">
<Transport Hostname="localhost" Port="9080" Protocol="http"/>

The application server will be marked as being down when it is unreachable in
situations such as:

- the application server has been stopped
- it is restarting

 15

- it is hung (and its TCP/IP backlog is full, etc.).

Choosing a RetryInterval value for your application

The default value is 60 seconds, which should work well for most applications.
Depending on your unique needs, you may consider increasing or decreasing
that value for your environment. As a general rule, you don’t want to set a
RetryInterval value too high, because then the failed clone will be out of loop for
that much longer. In case of a heavily loaded application, this may overburden
the remaining clones. However, with a high RetryInterval value, you will send a
request to the failed clone less often, resulting in fewer response delays caused
by the clone that is down.

Retrying the application server when it is up again

The plug-in retries sending a request to a downed application server every
<RetryInterval> seconds. If the failed application server has recovered in that
time, then it is marked as being “up” once again. Only new requests will be
forwarded to this application server, and requests currently associated with other
clones in this cluster will continue to go only to the old ones.

Removing the CloneID from plugin-cfg.xml

Sometimes, disabling the CloneID-checking step in the plug-in may provide
performance enhancement to the plug-in. We saw in Figure 3 that every request
that comes into the plug-in is checked for a pre-exiting CloneID and if the
CloneID is found, than the request is sent to the same clone that had serviced
that session earlier. If the applications running under this application server do
not use HTTP sessions, then the CloneID check is extra overhead.

To disable the CloneID check, open the plug-in file in any text editor and remove
the CloneID attribute. After the CloneID attribute is removed, every request
coming into the plug-in will be sprayed according to a simple round robin or
random algorithm. This spraying rule is specified in plugin-cfg.xml (default is
RoundRobin). Here’s how the CloneID attribute can be removed:

Before removing the CloneID attribute, the ServerCluster entry in plugin-
cfg.xml looks like this:

<ServerCluster Name="SimpleSessionCluster">

<Server CloneID="uji3uo25" LoadBalanceWeight="2" Name="SessionServerA">
<Transport Hostname="SHARAD.rchland.ibm.com" Port="9085" Protocol="http"/>
<Transport Hostname="SHARAD.rchland.ibm.com" Port="9448" Protocol="https">

<Property name="keyring" value="<WAS5_HOME>\etc\plugin-key.kdb"/>
<Property name="stashfile" value="<WAS5_HOME>\etc\plugin-key.sth"/>

</Transport>
</Server>
<Server CloneID="uji3uq4g" LoadBalanceWeight="2" Name="SessionServerB">

<Transport Hostname="SHARAD.rchland.ibm.com" Port="9086" Protocol="http"/>

 16

<Transport Hostname="SHARAD.rchland.ibm.com" Port="9449" Protocol="https">
<Property name="keyring" value="<WAS5_HOME>\etc\plugin-key.kdb"/>
<Property name="stashfile" value="<WAS5_HOME>\etc\plugin-key.sth"/>

</Transport>
</Server>
<PrimaryServers>

<Server Name="SessionServerA"/>
<Server Name="SessionServerB"/>

</PrimaryServers>
</ServerCluster>

After removing the CloneID attribute, the ServerCluster entry in plugin-
cfg.xml looks like this:

<ServerCluster Name="SimpleSessionCluster">

<Server LoadBalanceWeight="2" Name="SessionServerA">
<Transport Hostname="SHARAD.rchland.ibm.com" Port="9085" Protocol="http"/>
<Transport Hostname="SHARAD.rchland.ibm.com" Port="9448" Protocol="https">

<Property name="keyring" value="<WAS5_HOME>\etc\plugin-key.kdb"/>
<Property name="stashfile" value="<WAS5_HOME>\etc\plugin-key.sth"/>

</Transport>
</Server>
<Server LoadBalanceWeight="2" Name="SessionServerB">

<Transport Hostname="SHARAD.rchland.ibm.com" Port="9086" Protocol="http"/>
<Transport Hostname="SHARAD.rchland.ibm.com" Port="9449" Protocol="https">

<Property name="keyring" value="<WAS5_HOME>\etc\plugin-key.kdb"/>
<Property name="stashfile" value="<WAS5_HOME>\etc\plugin-key.sth"/>

</Transport>
</Server>
<PrimaryServers>

<Server Name="SessionServerA"/>
<Server Name="SessionServerB"/>

</PrimaryServers>
</ServerCluster>

¨ Warning:

 For lightly loaded systems, removing the CloneID attribute may not necessarily show
measurable improvement. It’s best not to hand-edit the plugin-cfg.xml file unless
necessary. Bear in mind the following points before you remove the CloneID attribute:

- Removing the CloneID attribute will offer only marginal performance
enhancement. The CloneID check is only one of the many checks that the
plug-in does for a request.

- Hand-editing the configuration file is prone to human error.
- Any hand editing to the configuration file may be overwritten the next time it is

regenerated by WebSphere.

d. Receiving response from the application server

After sending a request to the application server, the plug-in goes into a wait
state (waiting for the response). The end of this wait state can be reached in the
following ways:

 17

a. Expected behavior: When a response from the application server has
been received by the plug-in, the response is passed on to the Web server
and then to the Web browser.

b. Unexpected behavior: The request times out at a network level; the OS
level TCP/IP times out because the destination (application server) is
unreachable. This default TCP/IP timeout value varies depending on the
OS. The OS level error seen in http_plugin.log is ETIMEDOUT.

c. Unexpected behavior: The request times out at a network level due to the
ConnectTimeout parameter specified in plugin-cfg.xml. The OS level
error in http_plugin.log is EINPROGRESS.

d. Unexpected behavior: If the application server’s IP address is reachable
but the port is not up (for example, if the application server is in the
stopped state), the request will fail with the OS level error
ECONNREFUSED. This error is received instantly and is not dependent
on long network timeouts. You will see this error in http_plugin.log.

If the request fails, the application server is marked as unreachable and is then
taken out of the routing algorithm for a period specified by the RetryInterval. If the
failed application server is cloned, this request is passed on to other clones in the
ServerCluster. If communication with every clone in the cluster fails due to
network timeouts, the Web browser will receive an HTTP error 500.

The error values for the possible failures are different for different operating
systems, as seen in the table below:

Table 1. TCP/IP errors on various operating systems

 ETIMEDOUT EINPROGRESS ECONNREFUSED
AIX 78 55 79
Windows 10060 10036 10061
Solaris 145 150 146
Linux® 110 115 111
HP-UX® 238 245 239

These errors are typically seen in the plug-in logs for the following reasons:

- ETIMEDOUT: The plug-in could not create a connection to the application
server’s HttpTransport port within the OS level timeout of the plug-in
machine.

- EINPROGRESS: The plug-in could not create a connection to the
application server’s HttpTransport port within the ConnectTimeout interval
defined in plugin-cfg.xml file.

- ECONNREFUSED: The application server port the plug-in is trying to
reach is not listening. It is possible that the application server is not up.

 18

If you wish to read more about these errors from a TCP/IP perspective, there are
many TCP/IP-related resources on the Internet, such as:
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/commtrf2/connect.
htm
http://www.opengroup.org/onlinepubs/007908799/xsh/errors.html

1.4 Operation of the HttpTransport module

Figure 4. Operation of the HttpTransport

HttpTransport, also referred to as Imbedded HTTP Server or the Internal IHS, is
simply a Web server implemented in Java. Web servers are basically socket
servers that respond to requests based on the HTTP protocol. The HttpTransport
can be customized with various parameters such as TCP/IP KeepAlive
connections, TCP/IP backlog, etc. Section 2 of this paper explains how to set
these values.

The HttpTransport is responsible for the following tasks:

Configurable TCP/IP
port number
Example: 9080

Response to
plugin

HttpTransport

Arbitrarily assigned port
number

Close/Keep open the
TCP/IP connection as per
the KeepAlive settings for
the transport

Receive response and send
to plugin

Forward the complete HTTP
request for servicing

Read HTTP data packets
from the plugin. The read is
aborted if
ConnectionIOTimeout fires.
Num of concurrent reads are
limited by MaxThreads
setting in the Web Container

Process request for
html, image, JSP or
servlet as per the
servlet specification

Send response to the
HttpTransport

Request from
plugin

TCP/IP backlog

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/commtrf2/connect.htm
http://www.opengroup.org/onlinepubs/007908799/xsh/errors.html

 19

- Initialization when the application server is started: the configuration
parameters, such as TCP/IP KeepAlive parameters and the backlog, are
initialized at this stage (if changes are made to the HttpTransport settings,
it requires a restart of the app server).

- Receiving the request from the plug-in on the HttpTransport port, e.g.
9080.

- Forwarding the request to the Web container for handling.
- Receiving the response from the Web container.
- Closing the TCP/IP connection depending on the KeepAlive settings on

the HttpTransport.

¨ Debug tip:

 If you suspect an error to be in the HttpTransport component, trace the following
packages:

- com.ibm.ws.http.*
- com.ibm.ws.webcontainer.*

Summary

In this section, we acquired a deeper understanding of how the plug-in is
initialized and how it processes requests. We will use this understanding of the
plug-in in Sections 2 and 3, where we discuss plug-in tuning parameters and
plug-in problem determination.

 20

2 Plug-in configuration parameters

In this section, we discuss the many configuration parameters that can be tuned
so that your plug-in performs at its optimal level. These parameters can be
operating system parameters, plug-in parameters, or WebSphere Application
Server parameters.

This section is split into two parts: Section 2.1 discusses tunable parameters on
the application server side; Section 2.2 discusses those on the plug-in side.

2.1 Parameters on application server node

These parameters are set using the Web-based administrative console (webui)
of WebSphere Application Server V5 (alternatively you could do this from a
command line using wsadmin). These parameters are:

a. Maximum Web container threads, set on the Web container
b. ConnectionIOTimeout, set on the HttpTransport
c. ConnectionKeepAliveTimeout, set on the HttpTransport
d. MaxConnectBacklog, set on the HttpTransport
e. MaxKeepAliveConnections, set on the HttpTransport
f. MaxKeepAliveRequests, set on the HttpTransport

a. Maximum Web container threads

This parameter determines how many concurrent requests can be serviced by
the application server. In the figure below, you can see that the maximum size of
the thread pool is set to 50. This means that no more than 50 concurrent threads
can be serviced by this Web container. To modify this value, use the webui by
navigating to the Web container setting in the application server, as shown below:

 21

Figure 5. Configuring the Web container’s thread pool

If the Growable thread pool option is not checked, the maximum size of the
thread pool will be 50. If it is checked, then the application server will allow nearly
unlimited threads; limited only by the system and other configurations/capacities.
Use this option with caution. If you decide to check the Growable thread pool
option, be aware that it could allow unexpectedly high load to the application
server’s JVM memory, database connections, CPU, EJB container, etc., thus
possibly rendering the system unstable.

The next five parameters are set at the HttpTranport level. If you are using
multiple ports in the Web container (SSL and non-SSL), then you need to
configure each HttpTranport separately.

Using the navigation pane in the webui, traverse the tree:

Application Servers => <ServerName> => Web Container => HTTP Transports =>
<PortNumber>

and add the custom parameters as seen in the screen capture below.

 22

Figure 6. Custom properties for an HttpTransport

Let’s discuss each of these custom properties one by one.

b. ConnectionIOTimeout

This is the maximum time (in seconds) to wait when trying to read data during the
request. The default value is 5 seconds. This timeout determines how long to
wait to read at least one byte of data. The default value will work fine for most
environments. You may have to increase it if you experience extremely slow
network connections where two subsequent data packets come in spaced more
than 5 seconds apart.

Example: Data can dribble in one byte at a time every 4 seconds, and the 5
second timer would never fire.

 23

Some Web servers also have a similar setting to control the data flow to port 80.
Ensure that the corresponding Web server parameter is tuned in accordance with
the one on the HttpTransport.

c. ConnectionKeepAliveTimeout

This is the maximum time to wait for the next request on a KeepAlive connection.
The default value is 5 seconds. If the next request on this KeepAlive connection
is not received within this time, the connection will be closed. This value should
be set after studying the typical load on the application server. This custom
property is ignored if MaxKeepAliveConnections is equal to zero.

d. MaxConnectBacklog

This parameter plays a very important role when the WebSphere Application
Server system experiences unexpected spikes in load. If the application server’s
Web container receives more concurrent requests than it is configured for (Max
threads setting on the Web container), the requests start queuing up at a TCP/IP
level. The MaxConnectBacklog setting controls the number of such requests that
get queued up before the plug-in is refused more connection requests. If this
number is exceeded, the requests from the plug-in will not be able to connect to
the HttpTransport port. If not specified by the user, the default value of this
parameter is 512.

Example: If a Web container is configured for a maximum of 50 concurrent
threads and 512 requests in the backlog, we can have 512 + 50 = 562 concurrent
requests from the plug-in to port 9080. Fifty of these are in the application server
and the rest are waiting in the backlog’s FIFO queue in the OS kernel. If the 563rd
request from the plug-in comes into port 9080, it will be rejected and the plug-in
will get an ETIMEDOUT error in http_plugin.log.

¨ Tip:

 The TCP/IP protocol gives a lot of flexibility to the operating system vendor on how to
implement the TCP/IP backlog parameter. As a result, different OS vendors add a
margin of safety to the backlog buffer. In this document we refer to this margin of
safety as the “Fudge Factor”.

For the MaxConnectBacklog parameter to work correctly, the corresponding OS
level value of the backlog parameter should be equal to or greater than the one
defined in WebSphere Application Server’s HttpTransport configuration. Most
operating systems provide commands to set a system wide global parameter for
the maximum backlogged connections. Note that the upper limit for the
MaxConnectBacklog setting in the HttpTransport properties is limited by this
global OS setting.

 24

Example: If the OS level backlog setting is 256 and the backlog setting in the
HttpTransport properties is 512, the effective value becomes 256. The table
below provides instructions on how to change the backlog value at an OS level:

Table 2. Modifying the OS level TCP/IP backlog parameter

OS Command to specify the backlog Notes

AIX

/usr/sbin/no –o somaxconn=1024 Default=1024

Solaris

/usr/sbin/ndd –set /dev/tcp
tcp_conn_req_max_q 1024

Default=128

Refer to the Solaris
documentation4 for more
information.

Windows

Use regedit and navigate to:

HKEY_LOCAL_MACHINE
\SYSTEM
\CurrentControlSet
\Services
\NetBt
\Parameters
\MaxConnBacklog

Value Type: REG_DWORD

Default=1000

Linux kernel 2.2

/sbin/sysctl –w
net.ipv4.tcp_max_syn_backlog=1280

Default=1024 for systems
with memory greater than
128 MB

Default=128 for systems
with up to 128 MB

Appendix A discusses the backlog parameter from an OS and TCP/IP
perspective in much greater detail.

e. MaxKeepAliveConnections

This parameter has been provided in the HttpTransport to improve performance
by enabling reuse of HTTP connections that have already been established
between the plug-in and the application server’s HttpTranport. It provides a
performance boost because it prevents each new HTTP request from creating a
new connection (new connection creation has an overhead on the plug-in and
the HttpTransport). This is analogous to a JDBC connection pool, where a single
JDBC connection is used by many different requests.

4 http://docs.sun.com/db/doc/816-0607/6m735r5fn?a=view
On this URL, read about tcp_conn_req_max_q and tcp_conn_req_max_q0 to fully understand how Solaris handles
TCP/IP connection backlog.

http://docs.sun.com/db/doc/816-0607/6m735r5fn?a=view

 25

The maximum number of concurrent KeepAlive connections across all the HTTP
transports in a Web container should be less than the maximum number of
concurrent threads allowed in that Web container. This prevents all of the threads
from being held by keep alive connections so that there are threads available to
handle new incoming connect requests. The default value is 90% of the
maximum number of threads in the Web container’s thread pool. This percentage
could be optimized for your environment depending on your loading pattern and
other factors.

The KeepAlive connections will be terminated by either the
MaxKeepAliveRequests parameter or the ConnectionKeepAliveTimeout
parameter, described next.

f. MaxKeepAliveRequests

This parameter specifies the maximum number of requests which can be
processed on a single KeepAlive connection. This is an integer value which
defaults to 100 if not specified by the user. Setting this property to a high value
provides better performance. Setting this property to a low value can help
prevent denial of service attacks if a client tries to hold on to a KeepAlive
connection indefinitely. This custom property is ignored if
MaxKeepAliveConnections is equal to zero.

2.2 Parameters on the Web server side

There are two types of configurable parameters on the Web server node. The
first category is of the OS level parameters, and the second category is of the
WebSphere-specific parameters specified in plugin-cfg.xml.

We will limit our discussion here to only those parameters that play a major role
in failover and peak load scenarios. These parameters are:

a. OS parameter: TCP/IP timeout
b. Plugin-cfg.xml parameter: ConnectTimeout
c. Plugin-cfg.xml parameter: RetryInterval

a. OS parameter: TCP/IP timeout

When a TCP/IP client is not able to communicate with a TCP/IP server in the
time specified by the TCP/IP timeout, that request is aborted. This is one of the
ways in which a request from the plug-in (TCP/IP client) to the HttpTransport
(TCP/IP server) fails, thus marking that the application server down.

Once this setting is changed, it not only affects the plug-in, but also every other
TCP/IP client application running on that node. Therefore, always exercise
caution when changing this value.

 26

The table below provides instructions on how to modify these values on various
operating systems.

Table 2. Configuring the OS level TCP/IP timeout parameter

OS

TCP/IP Timeout configuration

Notes

AIX To view:
/usr/sbin/no -o tcp_keepinit

To set:
/usr/sbin/no -o tcp_keepinit = 100

The command “no” is short
for "network options".

Default=75 seconds.

Units are half-seconds, so the
default setting of tcp_keepinit
is 150.

Solaris

To view:
ndd /dev/tcp tcp_ip_abort_cinterval

To set:
ndd -set /dev/tcp tcp_ip_abort_cinterval
60000

Default=180 seconds.

Unit is milliseconds, so the
default setting is 180000.

NT/2000

Using regedit, navigate to:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlS
et\Services\Tcpip\Parameters

From the Edit menu select New => DWORD value

Enter the name: InitialRtt
Double-click InitialRtt and set the value to the
number of milliseconds
Example: 5000 for 5 seconds

Timeout = 7 * InitialRtt
Example: For 3 seconds (3000 milliseconds)
Timeout = 7 * 3 = 21 seconds

Default=7*InitialRtt=7*3=21
sec.

Unit is seconds. NT Service
Pack 5 adds a new registry
entry, InitialRtt, which allows
the retransmission (or
timeout} time to be modified.

Restart the machine for the
change to take effect.

Linux

The general syntax is:
ipfwadm -M -s tcp timeout <value>

Example: ipfwadm –M –s tcp timeout 300

Default value is 300 seconds.

Unit is seconds.

b. Plugin-cfg.xml parameter: ConnectTimeout

The ConnectTimeout attribute of a Server element allows the plug-in to perform
non-blocking connections with the application server. Non-blocking connections
are beneficial when the plug-in is unable to contact the destination to determine if
the port is available or unavailable. If no ConnectTimeout value is specified, the
plug-in performs a blocking connect in which the plug-in sits until an operating
system times out and allows the plug-in to mark the server unavailable. A value

 27

of 0 causes the plug-in to perform a blocking connect. A value greater than 0
specifies the number of seconds you want the plug-in to wait for a successful
connection. If a connection does not occur after that time interval, the plug-in
marks the server unavailable and fails over to one of the other servers defined in
the server group.

If no clone responds within ConnectTimeout seconds, HTTP error 500 is returned
to the Web browser. If this value is lower than the TCP/IP timeout on that
machine, it will always fire before the TCP/IP timeout. One of the advantages of
using this attribute is that we can attain a lower value for the timeout without
having to change it at an OS level.

If a clone has been marked down, the plug-in will retry that server after the
RetryInterval (default value 60 seconds).

Bear in mind that keeping it too low could produce false positives and make the
plug-in think that the application server is down, when you simply may have
network congestion. This would cause the slow application server to be
inaccurately marked as down, resulting in extra load for the remaining application
servers.

The ConnectTimeout attribute is set in the following manner:

<Server CloneID="uad0905b" LoadBalanceWeight="2" Name="LNCluster1Clone1"

ConnectTimeout="3">
<Transport Hostname="gladiator.transarc.ibm.com" Port="9083"

Protocol="http"/>
<Transport Hostname="gladiator.transarc.ibm.com" Port="9446"

Protocol="https">
<Property name="keyring" value="/opt/WebSphere/AppServer5/

etc/plugin-key.kdb"/>
<Property name="stashfile"value="/opt/WebSphere/AppServer5/

etc/plugin- sth"/>
</Transport>

</Server>

If the ConnectTimeout fires, you can see this logged in the plug-in log as shown
below:

===
[Mon Jan 20 13:08:59 2003] 00000e44 0000000f - ERROR:

ws_common: websphereGetStream: Connect timeout fired
[Mon Jan 20 13:08:59 2003] 00000e44 0000000f - ERROR:

ws_common: websphereExecute: Failed to create the stream
[Mon Jan 20 13:08:59 2003] 00000e44 0000000f - ERROR:

ws_server: serverSetFailoverStatus: Marking LNC2Clone3 down
[Mon Jan 20 13:08:59 2003] 00000e44 0000000f - ERROR:

ws_common: websphereHandleRequest: Failed to execute the transaction
to 'LNC2Clone3'on host 'hercules.transarc.ibm.com'; will try another one

[Mon Jan 20 13:08:59 2003] 00000e44 0000000a - ERROR:
ws_common: websphereGetStream: Connect timeout fired

[Mon Jan 20 13:08:59 2003] 00000e44 0000000a - ERROR:
ws_common: websphereExecute: Failed to create the stream

[Mon Jan 20 13:08:59 2003] 00000e44 0000000a - ERROR:

 28

ws_server: serverSetFailoverStatus: Marking LNC2Clone3 down
[Mon Jan 20 13:08:59 2003] 00000e44 0000000a - ERROR:

ws_common: websphereHandleRequest: Failed to execute the transaction
to 'LNC2Clone3'on host’

===

c. Plugin-cfg.xml parameter: RetryInterval

This attribute is added to ServerCluster tag in the plugin-cfg.xml file. If the
server or clone is marked down by the plug-in, the value of this parameter will
specify when the plug-in will retry that application server. If not specified by the
user, the default value is 60 seconds.

A higher value will cause an application server to be offline for a longer period of
time (in case it’s already recovered). A smaller value will cause new requests to
receive a delayed response more frequently if the application server is still down.

Here’s how this parameter is set:

<ServerCluster Name="LNCluster1" RetryInterval="420">

<Server CloneID="uad0905b" LoadBalanceWeight="2" Name="LNCluster1Clone1"
ConnectTimeout="3

<Transport Hostname="gladiator.transarc.ibm.com" Port="9083"
Protocol="http"/>

<Transport Hostname="gladiator.transarc.ibm.com" Port="9446"
Protocol="https">

<Property name="keyring" value="/opt/WebSphere/AppServer5/
etc/plugin-key.kdb"/>

<Property name="stashfile" value="/opt/WebSphere/AppServer5/
etc/plugin-key.sth"/>

</Transport>
</Server>

</ServerCluster>

Summary

In this section, we discussed many parameters that affect how the plug-in works.
The default values should typically work for most applications, but if your
application needs to be finely tuned, you might consider changing them based on
the discussion in this section. Exercise extreme caution when making some of
the OS level changes. Also, make sure to test these changes on your test system
before applying them in production.

If you’re interested in reading more about the TCP/IP level communication
between the plug-in and the application server, see Appendix A, which discusses
in detail the TCP/IP backlog queue and the role it plays during an application
hang. For still more details, read the book Unix Network Programming, 2nd
Edition by Richard Stevens.

 29

3 Problem determination

Sometimes it becomes very difficult to identify the failing WebSphere component,
and what may initially seem as a plug-in problem may in the end turn out to be
completely unrelated to it. In this section, we introduce tools and techniques that
will help you with the task of problem source isolation and troubleshooting. We
place special emphasis on understanding failure situations due to overloaded or
hung systems. If the information provided herein does not help solve the problem,
see the Troubleshooting section of the WebSphere Application Server V5
InfoCenter at:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.
doc/info/aes/ae/welc_troubleshooting.html.

3.1 Logs and traces

3.1.1 Logs and traces on the plug-in side

Let’s discuss in detail the various log files on the plug-in side.

1. Plug-in log file: http_plugin.log

When to use: plug-in initialization failures, HTTP errors 500, 403, 404 etc.,
application server hangs, unavailable application servers, network problems,
timeout errors in a Web browser.

If you suspect a plug-in problem, the plug-in log file is where you should first look
for clues. The exact location of this file is specified in the plug-in configuration file,
but the default location is <WAS5_HOME>\logs\http_plugin.log. Associated
with this log file is also a LogLevel attribute as seen below, which determines
how much error detail will be provided:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Config>

<Log LogLevel=”Error" Name="D:\WebSphere\DeploymentManager50\logs\
http_plugin.log"/>

LogLevel can have one of three possible values: Error, Warn or Trace. The Error
level (default) prints the least information, followed by Warn, which gives more
details, followed by Trace, which provides very detailed trace statements from
the entire plug-in code. Under normal working conditions, you should run the
plug-in with the default LogLevel Error, since this results in the most efficient
operation. If you run into problems, only then increase the log level to Warn or
Trace. Before making this change in a production environment, you must fully
study its performance impact by running load tests on a test system. If you do
decide to change the LogLevel, note that it is not necessary to restart anything
for the new setting to take effect. The updated plug-in will load automatically, as

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/ae/welc_troubleshooting.html

 30

per the RefreshInterval setting in the plug-in log file. The default value of
RefreshInterval is 60 seconds. This hot reload capability is very beneficial for
production systems, because it ensures continuous operation and still provides a
way to add diagnostic features to the environment.

¨ Best practice:

 Turning on tracing always has some performance impact. Before turning on any
tracing, make sure you’ve looked at things like:

- application server logs, discussed later in this section.
- application logs (if different from application server logs)
- javacores of the application server JVM, discussed later in this section
- CPU utilization, native memory, Java memory, I/O etc.

Sometimes the plug-in log can be up to several megabytes in size. It can take
some practice to understand the log file, so let’s discuss the format of a typical
log entry. Every line in the log is of the following format.

[ddd mm dd hh:mm:ss yyyy] PID TID - MsgType: Component: Task: Message

PID is the process ID of the Apache process. TID is the thread ID of a specific
request within that PID. Both PID and TID are in hexadecimal format.

MsgType can either be PLUGIN or it can be one of the three LogLevels. When
MsgType is PLUGIN, it means the accompanying message is an informational
message about the normal operation of the plug-in. When MsgType is one of the
three log levels, the message is an ERROR, WARNing or a TRACE statement.

When looking at the plug-in trace, you will typically see two types of trace
statements:

- Initialization trace statements: These provide information about the loading
of the plug-in configuration file when the Web server is started (or
restarted). Note that the plug-in does not try to connect to the application
server when initializing. It does this only when a request comes in. A
successfully initialized plug-in does not necessarily guarantee a
successful request/response with the application server.

- Request processing trace statements: These provide information about
plug-in tasks such as receiving the request from the Web server, sending
the request to the application server and such other tasks which are
described in Section 1.

 31

Following is an example of trace statements, which are printed when a response
is being received from the HttpTransport by the plug-in (with LogLevel set to
TRACE):

==

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: ws_common:
websphereExecute: Wrote the request; reading the response

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: lib_htresponse:
htresponseRead: Reading the response:

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: HTTP/1.1 200 OK

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: Server: WebSphere
Application Server/5.0

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: Set-Cookie:
JSESSIONID=0000NIK0UC2LBSJ00VVNHITUAEQ:uji3uq4g;Path=/

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: Cache-Control: no-
cache="set-cookie,set-cookie2"

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: Expires: Thu, 01 Dec 1994
16:00:00 GMT

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: Content-Type: text/html

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: Content-Language: en-US

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: Transfer-Encoding:
chunked

[Thu May 01 12:39:05 2003] 000006d0 00000750 - TRACE: ws_common:
websphereExecute: Read the response; breaking out of loop

==

2. Web server logs: access.log and error.log

When to use: HTTP errors 500, 403, 404 etc., Web server initialization errors,
Web server errors, application server hangs, unavailable application servers,
network problems, overloaded Web servers.

IHS provides two types of log files:

access.log: This file logs every response going back to the Web browser. If a
Web browser initiates a request and never gets a response back because it is
indefinitely hung inside the plug-in or the application server, you will never see a
corresponding response entry of that request in this file. The detailed format of
this log file is at: http://httpd.apache.org/docs/logs.html. Here’s a quick tour:

Every entry in access.log is of the following format:

127.0.0.1 - - [01/May/2003:15:48:00 -0500] "GET /AnyPath/MyServlet HTTP/1.0"
200 9736

Table 4 shows an explanation of the log entry.

http://httpd.apache.org/docs/logs.html

 32

Table 3. A typical log entry in access.log

Log Entry Description
127.0.0.1 The IP address of Web client.

First Hyphen (-) A hyphen means that this information is not available. This

space is intended for the identity of the client machine
(identity other than the IP address). This information is
normally unavailable.

Second Hyphen (-) A hyphen means that this information is not available. This
is the userID of the person requesting the document, as
determined by HTTP authentication. If the document is not
password protected, this entry will be "-".

01/May/2003:15:48:00 -0500 Date, time and time zone the response was written out to
the browser.

"GET /AnyPath/MyServlet
HTTP/1.0"

Specifies the data retrieval method (GET or POST), URL
requested and the HTTP protocol version.

200 This is the HTTP response code. Error code 200 means a
successful operation has occurred. Many error codes other
than 200 are cause for investigation. For example:

500 – Internal Server Error
403 - Forbidden
404 – URI not found

Complete list is at:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

9736 size of the response

What to look for in access.log:

a. Time gaps: If you see time gaps in access.log where you should be seeing
a steady stream, it may imply that your users are not getting successful
responses, at least not at the rate at which you expect.

b. HTTP return codes other than 200: Look especially for 500, indicating an
Internal Server Error. If you see an unusual buildup of error codes in
access.log, it means that your system is deviating away from a healthy
state.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

 33

¨ Monitoring tip:

 A healthy system should contain a steady stream of response entries in access.log.
By plotting Requests-per-second, versus Time for a 7-day period, you can estimate
your weekly loading pattern. Be ware that access.log logs ALL responses: those
serviced by WebSphere as well as those serviced by the Web server alone. A
distinction can be made between the two by looking at the URL serviced. The plug-in
configuration file contains a listing of all the URLs serviced by WebSphere. Those not
listed there are serviced by the Web server.

error.log: This file logs diagnostic information if IHS encounters any errors. The log level in this
file can be increased or decreased by modifying httpd.conf (for more information, see
http://httpd.apache.org/docs/logs.html). You shouldn’t have to look inside this log unless you
suspect IHS to have a problem.

3.1.2 Logs and traces on the application server side

1. HttpTransport logs (requires WebSphere Application Server V5 Fix Pack
2 or higher)

When to use: HttpTransport failures, plug-in failures, hung application server.

There are two types of log files available:

a. Access log file: Logs the completion of every request to the HttpTransport.
All responses will be logged, whether they are received directly from a
Web browser or via the plug-in. Default location of the access log file is:
<WAS5_HOME>/<server instance>/http_access.log

b. Error log file: Logs any errors encountered by the HttpTransport
component. On a healthy system, this file will usually be error free. Default
location of the error log file is: <WAS5_HOME>/<server
instance>/http.log.

These files log information similar to the corresponding logs in the IBM HTTP
Server, discussed in the previous section.

¨ WebSphere Application Server V5, FixPack 2 required:

 Access log and error log for the HttpTransport are available with WebSphere
Application Server V5 plus Fix Pack 2 or higher.

Logging is disabled by default.

To enable logging, open the webui by pointing your Web browser to
http://<machine>:9090/admin. Navigate down to the HttpTransport you wish to
configure and add the custom properties AccessLogDisable and ErrorLogDisable.
To enable logging, enter the value False for these two properties.

http://httpd.apache.org/docs/logs.html

 34

Figure 7. Enabling logging in the HttpTransport

Optionally, you may also add the custom properties AccessLog and ErrorLog to
specify the log file names. If you do not specify the log file names, the access
and error log entries will be written into the default file names
http_access.log and http.log, respectively.

2. Tracing the HttpTransport

When to use: HttpTransport failures

If you are still unable to tell what’s going wrong after viewing the Web server logs
and the HttpTransport logs, tracing the plug-in code, analyzing Java
ThreadDumps and collecting netstat results (both discussed later), etc., you
might consider tracing the HttpTransport code.

Tracing can be enabled using the webui or using command line tools.
Instructions for setting up trace are available at:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/utrb_traceservice.html

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do

 35

Trace the following packages:

• com.ibm.ws.http.*
• com.ibm.ws.webcontainer.*

WebSphere support teams will be able to understand the trace, but you want to
try to interpret the trace yourself, information to help you can be found here:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/ctrb_readtrc.html

3. Application server logs: SystemOut.log and SystemErr.log

When to use: User application failures, application server failures, HTTP errors,
application server hangs, unavailable application servers, timeout errors in a
Web browser.

It is possible that what initially may appear to be a plug-in problem is really not a
plug-in problem, but is instead due to some other component, such as the
application server or the user applications that run inside it. By default, the
application server logs are written to the directory
<WAS5_HOME>logs\<ServerName>. Check these logs to see if some
indication of any error can be found. If the user application uses the stdout and
stderr parameters of the application server for its own logging, the application
logs will also be written out to SystemOut.log and SystemErr.log.

3.2 Debugging tools and techniques
When the logs haven’t led you to the cause of the problem, you can use the next
group of tools and techniques to better understand the problem.

3.2.1 Using OS command: netstat

When to use: network problems, application server hangs, unavailable
application servers, timeout errors in a Web browser.

We’ve found the netstat command to be an invaluable tool in diagnosing some of
most difficult problems related to the plug-in, as well as other problems, such as
when the database connection hangs, etc. This single command and its many
(elusive!) options can come in very handy while debugging problems. The netstat
command can be run on the production system continuously without any
significant performance impact.

Here’s an example of a typical netstat output:

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/ctrb_readtrc.html

 36

Figure 8. Typical netstat output

Netstat output shows:

• One line for each TCP connection currently in existence in the system.
• From this listing, we can filter the port (e.g. 80 or 9080).
• We can also filter on the state of the TCP connection (see table below).

Here are some more examples:

netstat –an inet |grep 80 | grep CLOSE_WAIT

shows the connections to port 80 which are in CLOSE_WAIT state.

netstat –an inet |grep 9080| grep TIME_WAIT

shows the connections established to the application server port 9080

¨ Grep options –c and –v:

 grep –c prints out the number of lines in the netstat output, for example:

netstat –an | grep 80 | grep –c ESTABLISHED

will print out the number of connections.

grep –v excludes the string specified, for example:

netstat –an | grep 80 | grep ESTABLISHED | grep –cv 9080

will exclude all entries with 9080 in it.

There may be slight differences in the netstat command on different operating
systems. Refer to your operating system documentation for details on the various
options. Also note that the grep command does not exist on Windows-based
operating systems.

 37

Continuously running a script that monitors netstat output

When we’re dealing with plug-in problems that could occur randomly, and for
random periods, it becomes important to monitor the system continuously at all
times. One way to automate this monitoring is to write a script that will detect a
connection spike to a certain port and then send a pager/email out to the
production support staff. A sample script ns_9080.ksh is shown below. You can
use the script as is, or customize it for your environment by changing these four
lines:

• mailto: Notification list. Multiple email addresses can be specified,

separated by a space.
• maxconn: Maximum connection spike that you expect during steady state

operation.
• alertwait: Number of seconds to wait before sending out the next e-

mail alert.
• pollwait: Number of seconds to wait before gathering the next netstat

output.

Table 5. Continuous monitoring using the netstat command

#!/bin/ksh
ns_9080.ksh
Check netstat connection count and send alert
History:
May 5, 2003 Sharad Cocasse

mailto="PagerNumber@YourPhoneCoDomain.com YourID@YourEmailDomain.com"
maxconn=25
alertwait=600
pollwait=10

function netstat_9080
{

netstat -an | grep 9080 | grep -c ESTABLISHED | read numconn rest
if (($numconn > $maxconn)) ; then

echo - "$numconn connections on port 9080 detected!" | mail –s
"Websphere ALERT - $numconn CONNECTIONS" ${mailto}
sleep $alertwait
fi

}

while ((1)); do
netstat_9080
sleep $pollwait

done

Let’s discuss the various TCP/IP states. A netstat output shows the state of all
connections to a certain port. Below is a brief explanation about each TCP/IP
state and what they mean for connections going from the plug-in to the
HttpTransport.

mailto:Notification

 38

Table 6. TCP/IP connection states

TCP/IP state Typically a
problem?

Y/N5

Description

CLOSED N Not in use

LISTEN N Listening for incoming connections. You must have
exactly one such entry for each HttpTransport port.

SYN_SENT N Trying to establish the connection.

SYN_RECEIVED N Synchronizing the connection.

ESTABLISHED Usually N The connection is established (in use). If the number of
established connections (example: to port 9080) is
greater than the max threads setting of your Web
container, it could be a problem.

CLOSE_WAIT Maybe Waiting for socket to close. CLOSE_WAIT is a transition
state and typically should not last for more than a few
seconds. A large number of CLOSE_WAITs that linger
around for a long time could be a problem.

FIN_WAIT_1 N Shutting down the connection.

CLOSING N Closed, then remote shutdown; awaiting
acknowledgement.

LAST_ACK N Remote shutdown, then closed; awaiting
acknowledgement.

FIN_WAIT_2 N Socket closed; waiting for shutdown from remote node.

TIME_WAIT Maybe Wait after close for remote shutdown retransmission.
Typically this should not last for more than a few
seconds, but if it does, it needs to be investigated further.
If all client requests are going through the Web server
plug-in and there are many TIME_WAIT state sockets for
port 9080, the application server is closing connections
prematurely, which decreases performance. More
information is available at:

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/co
m.ibm.websphere.nd.doc/info/ae/ae/xrun_transport.html

5 FOR REFERENCE ONLY. This is based on simulated tests conducted in our lab using sample applications and
machine-simulated load. In your environment, these TCP/IP states could imply a completely different scenario.

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/xrun_transport.html

 39

3.2.2 Using telnet as a debugging tool

When to use: TCP/IP backlog full conditions, application server hangs,
unavailable application servers, network problems, timeout errors in a Web
browser.

We can use the telnet program to check the state of a TCP/IP port on the
WebSphere machine, such as the application server port 9080. We obviously do
not expect a successful telnet session when doing this; after all, port 9080 is an
HTTP Server, not a telnet sever. We can, however, use telnet to tell us the state
of the port. Here’s how:

a. Detecting a backlog full condition

When the TCP/IP backlog is full, a TCP/IP connection is not accepted by the port.
To find out if this is your problem, first ensure that your HttpTransport port is up
and running (perform a netstat to make sure that the port is in LISTEN mode).
Next, run the telnet command:

telnet <TargetMachineNameOrIPAddr> 9080

Figure 9. Using telnet to test status of the HttpTransport port

Hit ENTER. If the backlog is full, you will see a Connecting To <MachineName>
message that lasts for the OS timeout period, followed by a Connect failed
message. See the screen captures below for details:

 40

Figure 10. Plug-in trying to connect when the HttpTransport’s backlog is full

The default OS level timeouts (ETIMEDOUT values) are tabulated in Table 1; the
default value for Windows is 21 seconds. After the OS level timeout is reached,
you will see the Connect failed message as shown below. (Note that if you see
the Connect failed message instantaneously, without having to wait for the OS
level timeout, it could mean that your application server isn’t up and that port
9080 is not listening).

Figure 11. Connect request from the plug-in to the HttpTransport failed

b. Detecting a backlog partially-full condition

If all the threads of your Web container are used up, connections have started to
pile up in the TCP/IP backlog, and the backlog isn’t full yet, we can use the telnet

 41

program to verify that condition. Run the telnet command as in the previous
example, and if you get a “blank” screen as shown below, it could mean that the
TCP/IP backlog of the HttpTransport port is partially full:

Figure 12. Telnet request in the backlog of the HttpTransport (blank screen when using Windows)

The above screen indicates that you’re connected at a TCP/IP level but not at a
protocol level. The question that naturally comes to mind is How can a telnet
client connect to an HTTP Server? The answer is that the telnet client is
connected to the HTTP Server port and not the HTTP Server itself. The request
is still in the backlog at the TCP/IP level. Once this request from the backlog is
funneled up to the HttpTransport, the HTTP protocol validation algorithm (inside
the application server) will reject the telnet request, but until that happens, the
telnet request will continue to remain in the backlog.

Use this technique with caution, because if you terminate the telnet program
before it is funneled up to HttpTranport and rejected by the HTTP server, it will
result in a CLOSE_WAIT state on the application server machine and will tie up a
TCP/IP connection until CLOSE_WAIT times out. Refer to the documentation for
the default CLOSE_WAIT value for that particular operating system. Default
CLOSE_WAIT times on most operating systems are quite long, some up to
several minutes.

3.2.3 Using a Web browser to diagnose the problem

When to use: HTTP errors 500, 403, 404, etc., application server hangs,
unavailable application servers, network problems, timeout errors in a Web
browser.

 42

You can use a Web browser in the following ways to better understand the
problem:

a. Netscape® and Microsoft Internet Explorer handle errors differently. Try
using both to see if there’s any difference in the response.

b. Try pointing the browser directly to port 9080. Do you still get an error? If
you get the same error, it may be an indication that the plug-in isn’t the
problem component and that you should be troubleshooting the
application server instead.

c. Try to retrieve static HTML content from the Web server. If this works, you
may be able to eliminate at least the Web server as the problem
component. If your Web server is not configured to serve even a single
static file (e.g. HTML, jpg, gif), it might be a good idea to configure your
Web server to serve a sample HTML page just in case you ever need it to
perform such troubleshooting.

d. Try to retrieve static content from inside the application server. This can
sometimes help to verify the basic health of that application server. Static
content can be included in an EAR file, see the following URL for details:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere
.nd.doc/info/ae/ae/uweb_rsfiles.html.

3.2.4 Using Tivoli Performance Viewer

When to use: failures due to load spikes, application server hangs, timeout
errors in a Web browser.

If you suspect the plug-in to be failing, one of the questions that comes to mind is
What’s the state of the active servlet threads inside the application server? This
question can be answered by doing two things:

1. using Tivoli® Performance Viewer (TPV)
2. taking javacores (discussed later in this section).

In order to get an estimated count of the number of Web requests currently being
serviced inside the application server, use TPV to monitor the Web container
threads as shown below:

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/uweb_rsfiles.html

 43

Figure 13. Viewing Web Container threads using Tivoli Performance Viewer

In the screen capture above, you can see that two Web container threads are
currently active inside the application server. The pool size is currently 47, which
means that 47 – 2 = 45 threads are currently in an idle state. If the active thread
count is close to the maximum servlet threads for which your application server is
configured, it may be an indication of a problem inside the application server, not
the plug-in. Also, you may want to verify that there’s a correlation between this
count and the number of ESTABLISHED connections to port 9080, seen when
using netstat. Note that TPV displays Web container threads per application
server, and a netstat output will show ESTABLISHED connections to all the
application servers on this node. You will need to filter the netstat output by the
HttpTransport port number for a particular application server

Example: If server1 in the figure above uses port 9082 for its HttpTransport, run
the netstat command as:

netstat –an inet |grep 9082 | grep ESTABLISHED

Enabling TPV in an application server

To be able to view an application server’s performance/usage data in TPV, you
must have the PMI service enabled on the application server (it is disabled by
default). Use the webui to enable PMI service as shown below:

 44

Figure 14. Enabling the application server to be used with Tivoli Performance Viewer

Make sure you check the Startup box; otherwise the TPV service will not display
data.

More information about interpreting the TPV data and enabling PMI service can
be found in the WebSphere InfoCenter at:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/tprf_prfcntrstart.html

TPV can also be used to track the number of active HTTP sessions inside the
application server. This, too, would give you an indication of the kind of load that
is being pushed to the application server. The screen capture below shows a
sample scenario for the servlet SessionSample:

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprf_prfcntrstart.html

 45

Figure 15. Viewing HTTP sessions using the Tivoli Performance Viewer

3.2.5 Generating javacore files

When to use: application server hangs, timeout errors in a Web browser.

Javacores (also known as Java thread dumps) are text files which provide a
means to look inside the application server JVM and find out exactly what each
Java thread was doing at the time a dump was initiated. WebSphere support
relies heavily on javacores when debugging an application server that appears to
have “hung”. Multiple javacores taken a couple of minutes apart can help identify
if and why the application server hung.

Example: Taking three Java javacores 2 minutes apart.

How to take javacores? Depending on the operating system, a javacore can be
taken in the following manner:

a. Windows-based systems: Use the wsadmin utility by running:

<WAS5_HOME>bin\wsadmin.bat
wsadmin> set jvm [$AdminControl completeObjectName type=JVM,process=server1,*]
wsadmin> $AdminControl invoke $jvm dumpThreads

 46

In this example, server1 is the JVM whose javacores you wish to take.

b. UNIX-based systems: Use the wsadmin utility discussed earlier or use the
kill -3 PID command.

Example: If the PID of your application server is 23456, run the command:

kill -3 23456

Once the threads have been successfully dumped, they will be written into the
working directory of the application server under the file name
javacore.yyyymmdd.hhmmss.pid.txt. The default working directory is the
home directory of the application server; for example:
<path>/WebSphere/AppServer.

More information about javacores can be found at:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/rtrb_appdies.html

It takes some practice to understand a javacore. IBM provides a utility called
Thread Analyzer which makes it possible to see the javacore through a user
friendly GUI interface. Thread Analyzer is currently a technology preview and can
be downloaded from:
http://www7b.software.ibm.com/wsdd/downloads/thread_analyzer.html

3.2.6 Server-status utility in IBM HTTP Server

When to use: HTTP errors 500, 403, 404 etc., application server hangs,
unavailable application servers, network problems, timeout errors in a Web
browser.

The server-status utility in IBM HTTP Server (IHS) allows a system administrator
to view the state of every HTTP request passing though it. This utility comes in
very handy when debugging or monitoring plug-in related problems. Once the
server-status utility has been enabled in IHS, you can view the status by simply
pointing your browser to the URL http://ihs_machine_name/server-status, as
seen in the figure below:

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/rtrb_appdies.html
http://www7b.software.ibm.com/wsdd/downloads/thread_analyzer.html

 47

Figure 16. Server-status utility in IBM HTTP Server

The screen capture above shows that there are a total of five HTTP requests
currently being processed by IHS. Three requests are in K state which means
that they’re performing a read over a KeepAlive connection. One process is in W
state which means that it is sending a reply. One process is in “_” state which
means that it is idle and waiting for a request to come in. Refer to
http://httpd.apache.org/docs/mod/mod_status.html for a list of all possible states.

Enabling the server-status utility
Open <IHS_HOME>/conf/httpd.conf and uncomment the following lines
(note that these lines are at different places in httpd.conf):

LoadModule status_module libexec/mod_status.so

AddModule mod_status.c

<Location /server-status>
SetHandler server-status
order deny,allow
deny from all
allow from .your_domain.com
</Location>

For security reasons, you can limit the domain from which the server status can
be requested. Replace .your_domain.com with your organization’s domain so
that no one outside your organization will be provided this status.

On Windows-based platforms, you need to also uncomment the following line in
httpd.conf:

http://httpd.apache.org/docs/mod/mod_status.html

 48

#LoadModule status_module modules/ApacheModuleStatus.dll

The information at http://httpd.apache.org/docs/mod/mod_status.html explains
advanced usage scenarios of the server-status module in IHS.

3.3 Debugging WebSphere hangs

The term WebSphere hang is often used inappropriately to refer to many
different types of system hangs. In many instances, the problem may be due to a
variety of system or configuration issues, such as database connection hangs
and deadlocks, Java thread locking conditions, application code problems, etc. In
very few cases is the hang actually due to a WebSphere product defect.

Whatever the cause of the hang, a solid understanding of the plug-in is very
helpful in isolating and resolving such problems. Most types of hang conditions
manifest themselves in the form of TCP/IP connection clogging between the
plug-in and the application server. What makes these problems especially
difficult to resolve is the fact that when the problem occurs, a specific error code
is not returned to the user (Web browser). If the user sends a request after a
hang condition occurs, the user may wait a long time and then only receive a
generic error code, if any.

To get a better understanding of TCP/IP level clogging between the plug-in and
the HttpTransport, let’s look at the figure below:

Figure 17. TCP/IP backlog full

In the figure above, we see a Web server forwarding requests to the application
server via the plug-in. All servlet threads on the application server side are used
up (Tmax) and the backlog of port 9080 is full. When this happens, port 9080
becomes completely unresponsive to any new requests coming in from the plug-
in.

 T1
T2

Tn

Tmax +
BackLog

netstat –af inet | grep 9080

Web Server Layer

80

P
L
U
G
I
N

netstat –af inet | grep 80

WebContainer layer

Backlog Full

T1
T2
Tn

Tmax

9080

http://httpd.apache.org/docs/mod/mod_status.html

 49

¨ See Appendix A:

 Appendix A discusses the buildup of such a condition in detail.

The connections coming in from the plug-in should ideally have a 1-to-1
relationship with the Java threads in the Web container. If all the current threads
in the Web container are hung, new connections will start piling up in the TCP/IP
backlog buffer and will never make it to the application server. This will cause of
large number of TCP/IP connections to show up when you do a netstat. These
connections will be released only if the hung threads somehow terminate or if the
application server is recycled.

Here is the step-by-step scenario:

1. Threads inside the application server hang or appear to be hung.
2. The application server cannot accept any more requests.
3. New requests from the plug-in start piling up on the HttpTransport port

(e.g. port 9080).
4. The TCP/IP backlog parameter, plus the fudge factor determine how many

requests get backlogged.
5. When an application server's backlog buffer is full, the requests will not be

accepted by the TCP/IP port of that application server.

How do you know that you are experiencing this kind of hang?

Errors are printed out in the plug-in log file when this happens. Look for the OS
errors ETIMEDOUT or EINPROGRESS. Detailed explanations of these errors
are provided in Section 1.

The plug-in log will contain a log similar to the one below, indicating that you’ve
hit this condition (IHS running on Solaris):

==

[Wed Mar 12 14:35:56 2003] 0000247f 00000001 - ERROR: ws_common:

websphereGetStream: Failed to connect to app server on host 'localhost', [Wed

Mar 12 14:35:56 2003] 0000247f 00000001 - ERROR: ws_common: websphereGetStream:
Failed to connect to app server on host 'localhost', OS err=145

[Wed Mar 12 14:35:56 2003] 0000247f 00000001 - ERROR: ws_common:

websphereExecute: Failed to create the stream
[Wed Mar 12 14:35:56 2003] 0000247f 00000001 - ERROR: ws_server:
serverSetFailoverStatus: Marking server1 down
==

We can see after referring to Table 1 that OS error 145 on Solaris means
ETIMEDOUT.

 50

Alternatively, you can use the netstat command and the telnet program to
diagnose this situation. Details are in the sections titled 3.2.1 Using OS
command netstat and 3.2.2 Using telnet as a debugging tool.

How do you get relief from such a situation?

Requests piling up in the backlog can be caused by two factors: system capacity
overflow or code defects.

1. System capacity overflow: There are no bugs in any code, but the
requests/sec load is more than what the WebSphere application is configured to
handle. Performance tuning is beyond the scope of this paper, but you can refer
to the online performance tuning documentation on:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/tprf_tuneprf.html.

From a plug-in standpoint, here are some tunable parameters that often play an
important role during these conditions:

a. Maximum Web container threads: Increasing this value allows the
application server to accept more concurrent requests. Refer to
Section 2 for details on how to modify this value.

b. ConnectTimeout setting in plugin-cfg.xml: A low value helps the
plug-in detect a hung application server sooner, and thus returns an
error message to the user faster. A higher value will allow the plug-in
more time to make a connection with the application server which may
be beneficial when the network is slow. Refer to Section 2 for details
on setting and modifying this value.

c. TCP/IP timeout on the operating system: This works similar to the
ConnectTimeout attribute. It fires if the ConnectTimeout parameter is
not specified or is higher than the TCP/IP timeout. This value is set at
an OS level. Refer to Section 2 for details.

Several other parameters that affect capacity and performance are discussed
throughout this paper. Also refer to the online performance tuning documentation
when debugging capacity/performance issues.

2. Code defect: A hang condition could also be due to a code defect. Some
examples are:

a. A servlet or EJB does not close database connections in its catch{}
and finally{} blocks. When this happens, an application runs the risk of
running out of available database connections, which may result in a
hang-like condition.

b. A servlet calling a very long-running database query which causes that
thread to be in use for a long time. If many such queries run

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprf_tuneprf.html

 51

concurrently, it will cause new requests to get backed up, causing the
system to appear hung.

c. Thread lock conditions in a multi-threaded application.
d. Deviations from servlet/EJB specifications.
e. Defect in WebSphere, operating system, database, or database driver

code.

The following Web site lists some coding best practices that may be of interest to
developers of WebSphere based applications:
http://www7b.software.ibm.com/wsdd/zones/bp/.

Summary

There is a wide variety configuration parameters available to you to help you
diagnose and fix plug-in related issues. Getting several javacores several
minutes apart can help identify the cause of a “hung” application server. While
troubleshooting some really tough problems, we often have to resort to the
process of elimination methodology to gradually hone in on what the real problem
actually is.

http://www7b.software.ibm.com/wsdd/zones/bp/

 52

4 Miscellaneous topics

IBM HTTP Server (IHS) 2.0 offers a multi-threaded model rather than a
multiprocess model, which was offered in previous versions of IHS. This section
provides a brief description of how to configure IHS 2.0 with WebSphere
Application Server V5, and also explains the process of front-ending multiple
WebSphere domains with a single plug-in.

4.1 Configuring IHS 2.0 plug-in

Early versions of WebSphere Application Server V5 in a UNIX installation with
IHS V2.0 sometimes resulted in an incorrect LoadModule to be written into the
httpd.conf file. To correct this, you can manually edit httpd.conf to fix the
problem, as shown below:

LoadModule was_ap20_module <path to file named mod_was_ap20_http.so>
WebSpherePluginConfig <full path to config file>

For example, on the Solaris operating system it should be edited as follows:

LoadModule was_ap20_module /opt/WebSphere/AppServer/bin/mod_was_ap20_http.so
WebSpherePluginConfig /opt/WebSphere/AppServer/config/cells/plugin-cfg.xml

Detailed information about this configuration task is available on:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.
doc/info/aes/ae/tins_installIHS2.html.

4.2 Merging two plug-in files together

If you wish to front-end two or more WebSphere cells with the same Web server
and plug-in, you will need to manually merge the plug-in files from each cell into
one file. Front-ending multiple cells with a single plug-in can be useful for tasks
such as providing a higher level of failover capability, phased migration of
WebSphere versions, etc. When merging the files, follow the suggestions below:

1. Make sure you have unique names for the following tags:

a. ServerCluster
b. VirtualHostGroup
c. UriGroup
d. Route.

2. The contents of the following tags cannot be duplicated:

a. You cannot have more than one Route with the identical contents,
even if they have different names.

b. The same URI should not be defined in more than one URIGroup.

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/ae/tins_installIHS2.html

 53

c. You cannot have two VirtualHostGroups configured for the same
port number.

Detailed information is available on-line on:
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.
doc/info/aes/ae/tins_websmig2.html.

Summary

This section provides a high level idea of how to configure IHS 2.0 and also
introduces the concept of supporting multiple WebSphere Application Server
cells/domains using the same plug-in.

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/ae/tins_websmig2.html

 54

Conclusion

The Web server plug-in is one of the main entry points into WebSphere
Application Server, and for that reason we must continuously ensure that it’s
providing optimal service. With customers enabling more and more of their
enterprise functions to be accessible via the Web, the plug-in is handling more
load as time goes on. Therefore, the optimal plug-in configuration also changes
with time, which means that monitoring and tuning the plug-in for stability
becomes an iterative process as load is continuously increased.

Although the intent of this paper was to provide practical, hands-on advice on
ways to monitor, tune and troubleshoot the plug-in, our discussion was not
restricted to the plug-in layer alone. We also discussed the HttpTransport layer
and the operating system and basic guidelines on how to tune them for optimal
plug-in operation, since they play an important role in how the plug-in responds
during high load conditions.

We hope this paper helps answer questions and provides guidance with your
Web application development using the WebSphere Application Server plug-in.

 55

Appendix A
TCP/IP backlog and application server hang conditions

This appendix provides more information about the hang condition that was
discussed briefly in Section 3.3. The series of illustrations below depict a buildup
of a hang condition, beginning with a healthy system that shows typical load:

Figure 18. Typical load – within capacity

A Web server forwards requests to an application server’s Web container via the
WebSphere plug-in. The number of permissible threads in the Web container is
Tmax. The dotted line next to Tmax indicates that not all threads are being used up
by the application server, and that the maximum capacity of the threads has not
been reached. The connections coming in from the plug-in have a 1-to-1
relationship with the Java threads in the Web container. There is no clogging of
threads or TCP/IP connections in the figure above, and therefore this state is a
healthy one.

Now, let’s consider a scenario when all permissible Java threads are used up.

 T1
T2

Tn

netstat –af inet | grep 9080

Web Server Layer

80

P
L
U
G
I
N

netstat –af inet | grep 80

WebContainer layer

T1
T2
Tn

Tmax

9080

Backlog Empty

 56

Figure 19. Full capacity – all Web container threads used up

The above diagram represents a Web container whose threads are all in use.
Any more requests coming into the Web container will not find an available
thread and will start filling up the backlog. This is seen in the next figure:

Figure 20. Over capacity – TCP/IP backlog partially full

This state is not a healthy one. All the Java threads are tied up doing work and
more requests are coming in with new work. Basically, what’s happening here is
that the application server has lower capacity than expected, and any new
requests that come in will now start piling up in the backlog of that port. If you
perform a netstat on the application server machine, you will see connections
equaling the number of Java threads and what’s in the backlog. As the Java
threads are returned back to the pool, the requests will move from the TCP/IP
backlog into the application server in a FIFO manner. These requests are not lost,
they are just in the backlog waiting for their turn. If all the current threads in the
Web container are hung, they will never make it to the application server, and will
be released only if the hung threads somehow terminate, or if the application
server is recycled. This condition does not necessarily imply that the system has

Backlog
Partly Full

 T1
T2

Tn

Tmax +
xBL

Web Server Layer

80

P
L
U
G
I
N

netstat –af inet | grep 80

WebContainer layer

9080

netstat –af inet | grep 9080

T1
T2
Tn

Tmax

 T1
T2

Tn

Tmax

netstat –af inet | grep 9080

Web Server Layer

80

P
L
U
G
I
N

netstat –af inet | grep 80

WebContainer layer

9080

T1
T2
Tn

Tmax

Backlog Empty

 57

failed. If this condition lasts only for a short time, it could mean that there was a
short spike in traffic and the system was able to recover from that spike. Tuning
the application server(s) can help prevent such spikes. If this state lasts for a
long time, it could mean that the system has entered an unstable state which
requires corrective measures.

In the next figure, let’s see what happens when the backlog is full:

Figure 21. Over capacity – TCP/IP backlog full

There will now be requests coming in from the plug-in which never get connected
to the application server. These requests will timeout, and this timeout is
dependent on whether or not the ConnectTimeout parameter is specified in
plugin-cfg.xml.

1. If a ConnectTimeout parameter is specified on the plug-in, the plug-in will
try to reconnect for that many seconds, otherwise the plug-in will quit
forwarding requests to the application server. If you look in the plug-in logs,
you will see that this application server is marked as being down after the
first request fails by not making it into the plug-in. If you turn on tracing in
the plug-in, you will see the reason code of this failure as OS error =
EINPROGRESS

2. If ConnectTimeout is not specified on the plug-in, the failure will be due to
the TCP/IP abort interval that’s specified for that system. The default
TCP/IP intervals are provided in Section 2. If you see a failure due to this,
you will see OS error = ETIMEDOUT in the plug-in logs, if trace has been
enabled. Values of ETIMEDOUT on various operating systems are
provided in Section 1.

For example, if, due to a deadlock or an indefinite wait condition in the user
application, all the threads in a Web container went into a hung state, that Web
container will no longer accept any more requests from the plug-in. This will give

Backlog Full

 T1
T2

Tn

Tmax
+ BL

netstat –af inet | grep 9080

Web Server Layer

80

P
L
U
G
I
N

netstat –af inet | grep 80

WebContainer layer

9080

T1
T2
Tn

Tmax

 58

rise to a lot of network calls to the Web server and to the application server which
do not ever enter the application server.

How this happens:

- Threads inside the application server hang or appear hung.
- The application server cannot accept any more requests.
- New requests from the plug-in start piling up on the HttpTransport port.
- The TCP/IP backlog parameter, plus the fudge factor determine how many

requests get backlogged.
- When an application server's backlog buffer is full, the requests will not be

accepted by the TCP/IP port of that application server.

In general, there are three types of requests that we’re referring to:

1. Requests already in the application server, these should never
timeout. These requests constitute a running thread in the application
server JVM. This thread will be released by the logic contained in the
application server. The plug-in does not have any control on this thread
and will continue to wait for it indefinitely. The plug-in has done its job and
TCP/IP has done its job, but if the application server is not finished with
this thread, this request will linger around until the application logic
releases it, or until the application server is recycled. None of the plug-in
timeouts will trigger (OS level timeout or the ConnectTimeout in plugin-
cfg.xml) for this thread.

2. Requests in the backlog buffer of the application server’s

HttpTransport port. These requests are now owned by the TCP/IP layer
of the application server machine. If at this point the application server is
recycled, these requests will be lost.

3. Requests that are being rejected due to the backlog being full. These

will fail at the plug-in level and will never make it to the application server.
The plug-in log will have corresponding ETIMEDOUT or EINPROGRESS
errors for each of these rejections. However, the requests will go to other
clones if available.

TCP/IP overloading is often a common symptom seen during hang conditions.
Many of the concepts discussed in this Appendix apply not only to the plug-in
and Java-based applications, but to any other heavily loaded applications which
also use TCP/IP.

 59

Appendix B
Summary of references

Below is a consolidated list of all the references in this paper.

IBM references

Multiple WebSphere Application Server domains front-ended by the same plug-in
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.
doc/info/aes/ae/tins_websmig2.html

Syntax of plugin-cfg.xml file
http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websp
here.nd.doc/info/ae/ae/rrun_plugin.html

WebSphere troubleshooting page
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.
doc/info/aes/ae/welc_troubleshooting.html

Instructions to trace the WebSphere Application Server product code
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/utrb_traceservice.html

Interpreting the WebSphere Application Server trace output
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/ctrb_readtrc.html

Configuring custom properties on the HttpTransport layer
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/xrun_transport.html

Serving static content from an EAR file
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/uweb_rsfiles.html

Using the Tivoli Performance Viewer
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/tprf_prfcntrstart.html

Debugging the JVM
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/rtrb_appdies.html

Using the Thread Analyzer utility to view the javacore output
http://www7b.software.ibm.com/wsdd/downloads/thread_analyzer.html

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/ae/tins_websmig2.html
http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rrun_plugin.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/ae/welc_troubleshooting.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/utrb_traceservice.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/ctrb_readtrc.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/xrun_transport.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/uweb_rsfiles.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprf_prfcntrstart.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/rtrb_appdies.html
http://www7b.software.ibm.com/wsdd/downloads/thread_analyzer.html

 60

Tuning WebSphere Application Server performance
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.do
c/info/ae/ae/tprf_tuneprf.html

WebSphere Best Practices Zone
http://www7b.software.ibm.com/wsdd/zones/bp/.

Installing and configuring IBM HTTP Server 2.0
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.
doc/info/aes/ae/tins_installIHS2.html

TCP/IP errors
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/commtrf2/connect.
htm

Other references

Interpreting Apache logs
http://httpd.apache.org/docs/logs.html

Understanding HTTP return codes
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Using the Server Status utility in IBM HTTP Server
http://httpd.apache.org/docs/mod/mod_status.html

TCP/IP errors
http://www.opengroup.org/onlinepubs/007908799/xsh/errors.html

Book: Unix Network Programming, 2nd Edition by Richard Stevens

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.nd.doc/info/ae/ae/tprf_tuneprf.html
http://www7b.software.ibm.com/wsdd/zones/bp/.
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/ae/tins_installIHS2.html
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/commtrf2/connect.htm
http://httpd.apache.org/docs/logs.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://httpd.apache.org/docs/mod/mod_status.html
http://www.opengroup.org/onlinepubs/007908799/xsh/errors.html

